QUESTION BANK 2016

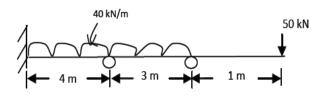
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

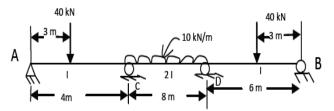
QUESTION BANK (DESCRIPTIVE)

Subject with Code : SA-II (13A01505)

Course & Branch: B.Tech – CE

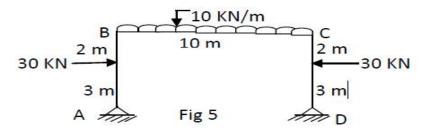

Year & Sem: III-B.Tech & I-Sem

Regulation: R13


<u>UNIT – III</u>

KANI'S METHOD

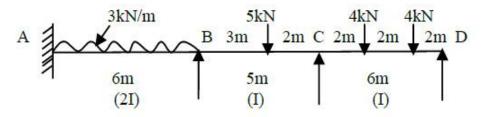
1. Determine the moments at supports if support B yield by 10 mm under the given loading for the beam as show in figure below by Kani's method, E=2.05x10⁵ N/mm², I=30x10 mm⁴. 10M



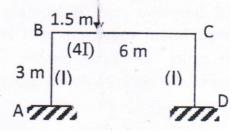
2. Determine the end moments of the continuous beam as shown in figure below by Kani's method. E is constant. 10M

3.(a) Explain how settlement of supports in accounted in to Kani's method of analysis of structures.

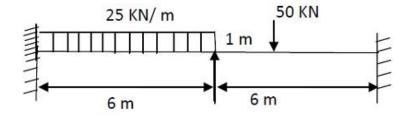
- (b) Explain how portal frames with side sways are analysed. 5M
- 4. Analyse the structure shown in figure using Kani's method and draw BMD. 10M

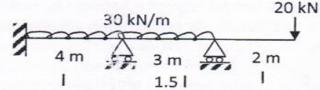

5. Analyse the continuous beam shown in figure by Kani's method and sketch the B.M diagram gives all the salient values

10M


5M

Structural Analysis-II


QUESTION BANK 2016


- 6. A two span continuous beam ABC rests on simple supports at A,B and C. All the three supports are at same level. The span AB=5m and span BC=4m. The span AB carries a uniformly distributed load of 15kN/m and span BC carries a central point load of 25kN. EI is constant for the whole beam. Find the moments and reactions at all the supports and draw the bending moment diagram using Kani's method. 10M
- 7. Analyze the frame shown in figure using kani's method 80 kN

8. (a) Explain Kani's method of solving a frame subjected to sway forces. 4M(b) Evaluate the bending moment and shear force diagrams of a beam in figure by the Kani's method 6M

9. Analyse the continuous beam shown in figure using Kani's method

10. a) Calculate the rotation factors for the beam shown in figure below

60 kN 60 kN 20 kN/m ↓ 1.5 l 1 2 l

Structural Analysis-II

10M

10M

2M

	QUESTION BANK 2016
b) Write advantage of Kani's methodc) What is the purpose of Kanis method analysis?d) Define Rotation factore) Define Stiffness of joint.	2M 2M 2M 2M

QUESTION BANK	2016
QUESTION BANK	2016

S			UTIONS :: PUTTUR m Road – 517583	
SDDH AFTH CUTTER CUTERS	QUESTI	<u>ON BANK (OB</u>	<u>JECTIVE)</u>	
Subject with Code	: SA-II (13A01505))	Course & Branch:	B.Tech – CE
Year & Sem: III-B	Tech & I-Sem		Regulation: R13	
		<u>UNIT-III</u>		
	<u>K</u>	ANI'S METH	OD	
i) Macaula ii) Column iii) Kani's n	hods are used for stru y method analogy method nethod of sections	ctural analysis:		[]
Those used for it	ndeterminate structura	ıl analysis would i	nclude:	
A) i and ii	B) i and iii	C) ii and iii	D) ii, iii and iv	
B) The ratio of t	he moment borne by t he area of the memb the moment induced	he member to the per to the sum of	total moment applied at the join the areas of several members the moment applied at the	rs
		od is advantage	ous over Moment distributi	on method sinc []
•	etic error that creeps actual solution of sin			
4. Sway calculation	s and non-sway calc	culations are carr	ied out in a single operation	in []
A) Kani's metC) Unit load n		B) Moment di D) none	stribution method	
fast in	tribution method	B) Kani's met	nged relatively, the analysis hod deformation method	can be modifie
6. When an end of	continuous beam is	s fixed, in Kani'	s method, the rotation cont	ribution will be
A) 0	B) EI/ <i>l</i> C) 2I	EI/ <i>l</i> D) EI		

Structural Analysis-II

QUESTION BANK 2016

	A) Infinite	B) zero	C) unit	D) none			
5. III	,	,		,	er with a sway of δ i	s: []
	A) EI δ	B) $6\text{EI}\delta/l^2$	C) 4	$EI\delta/l$ D) 3	3EI/l		
9 K:	ani's Method v	was introduce	d bv			[]
	A) Gasper Kar		A. Maney	C) Hardy Cros	ss D) None	L	J
	otation factor i		A. Maney	C) Hardy Clo	55 D) None	г	1
						[]
	A) 0.5DF	,	25DF	C) -0.5 DF	D) -0.25DI		
1. A	Continuous bea	am ABC, suppo	orts A and C are	fixed and support	B simply supported of	carries an	udl of
	kNm ⁻¹ over AE	3 span. Span A	B=6m, BC=4m	.Fixed end momen	nt at A	[]
	A) -9kNm	B) 9.5	ökNm	C) -8.5 kNm	D) 8kNm		
	Continuous bea er BC span. Spa				B hinged carries an u	udl of 3 kľ [√m ⁻¹]
ä	a) -9kNm	b) 9kl	Nm	c) -4 kNm	d) 4 kNm		
13. Th	e distribution fa	actor of a mem	ber at a joint is:			[]
	Δ) The ration (of the moment	borne by the m	11 1			
]	A) The ration of	of the area of the the moment in	ne member to th	e sum of the areas	moment applied at the of several members nt applied at the near	-	
]	A) The ration ofB) The ratio of	of the area of the the moment in above	ne member to the duced at the far	e sum of the areas	of several members	-]
14. A	 A) The ration of B) The ratio of C) None of the beam is comple A) Support rea B) Shear and m C) The moment 	of the area of the the moment in above etely analysed, actions are det noment diagram of inertia is un	ne member to th aduced at the far when ermined ns are found	e sum of the areas r end to the momer	of several members	end]
] 4. A 	 A) The ration of B) The ratio of C) None of the beam is comple A) Support rea B) Shear and m C) The moment D) All of the above 	of the area of the the moment in above etely analysed, actions are det noment diagram of inertia is un ove	the member to the nduced at the far when ermined ns are found hiform througho	e sum of the areas r end to the momer	of several members nt applied at the near	end]
] 4. A 15. A	 A) The ration of B) The ratio of C) None of the beam is comple A) Support rea B) Shear and m C) The moment D) All of the above 	of the area of the the moment in above etely analysed, actions are det noment diagram of inertia is un ove a structure com	the member to the nduced at the far when ermined ns are found hiform througho	e sum of the areas r end to the momer but the length	of several members nt applied at the near nected by	end []
] 4. A 15. A	 A) The ration of B) The ratio of C) None of the beam is comple A) Support rea B) Shear and m C) The moment D) All of the about rigid frame is a 	of the area of the the moment in above etely analysed, actions are det noment diagram of inertia is un ove a structure com B) sir	ne member to the nduced at the far when ermined ns are found hiform throughout sposed of memb nple bearing	e sum of the areas r end to the momer out the length ers which are conr	of several members nt applied at the near nected by	end []]
14. A 19 15. A 16. C	 A) The ration of B) The ratio of C) None of the beam is comple A) Support rea B) Shear and m C) The moment D) All of the about the rigid frame is a A) Rigid joints Consider the for Sinking of an i 	of the area of the the moment in above etely analysed, actions are det noment diagran of inertia is un ove a structure com B) sir llowing staten intermediate s	the member to the nduced at the far when ermined ns are found hiform throughout sposed of member on ple bearing ments support of a co	e sum of the areas r end to the momer out the length ers which are conr C) a single rive ntinuous beam	of several members nt applied at the near nected by	end [[the above]
14. A 15. A 16. C	 A) The ration of B) The ratio of B) The ratio of C) None of the beam is comple A) Support rea B) Shear and n C) The moment D) All of the above rigid frame is a A) Rigid joints Consider the for Sinking of an i i. Reduce 	of the area of the the moment in above etely analysed, actions are det noment diagram of inertia is un ove a structure com B) sir llowing statem intermediate set the negativ	the member to the natuced at the far when ermined ns are found hiform throughout posed of memb mple bearing ments support of a co e moment at a	e sum of the areas r end to the momer out the length ers which are conr C) a single rive ntinuous beam support	of several members nt applied at the near nected by	end [[the above]]
14. A 14. A 15. A 16. C	 A) The ration of B) The ratio of B) The ratio of C) None of the beam is comple A) Support rea B) Shear and n C) The moment D) All of the about the formation of the	of the area of the the moment in above etely analysed, actions are detended in a structure com a structure com B) sir llowing statent intermediate set the negatives set the negatives	the member to the nduced at the far when ermined ns are found hiform throughout sposed of member on ple bearing ments support of a co	e sum of the areas r end to the momer out the length ers which are conr C) a single rive ntinuous beam support a support	of several members nt applied at the near nected by	end [[the above]

			QUESTION BANK	2016
Of these statements,	which are correct			
A) 1 and 4	B) 1 and 3	C) 2 and 3	D) 2 and 4	
17. For the application of	f moment area meth	od, for finding deflec	tion at a section in a be	am
			[]
A) The position of a	at least one tangent	to the elastic curve, sh	nould be known	
B) The M/EI diagra	m must be a triangl	le		
C) The beam must b				
D) The B.M. diagra	m if known is suffi	cient		
18. Which of the followi	ng is not the displa	cement method	[]
A) Equilibrium meth	nod B) Moment Distribution	n method	
C) Column analogy	method D) Kani's method		
19. Which of the following	ng methods of struc	tural analysis is a Fore	ce method []
A) Slope deflection	method B)Moment Distribution	method	
C) Column analogy	method D)Kani's method		
20. The force required for	r a spring produced	by unit displacement	is called' []
A) Flexibility B) sti	ffness C) torsion	nal D) none		
21.In the displacement m		•]
A) Displacement B)	-	cement & Force D) no	one of the above	
22. The analysis of multist		•	[]
A)slope deflection n		nt distribution method		
C)Kani's method	D)None			
23. Rotation factor for fixe $A = 0.5 \text{ W} \times 10^{-10} \text{ K}$		•		J
A) - 0.5 K/ Σ K	B)-0.4 K/	—		1
24. Fixed end moment fro A) W $a^2 b/l^2$ B) W]
25.Final moments calcula	,	,	ſ	1
A) FEM+2 NEC +F	•	-NEC+2FEC C) FEM-	+2NEC D)None]
26.Displacement factor fo	,]
A) -1.5 k/∑k B) -1		•		J
27.In portion AB, the free			with maximum ordinat	te as
_,		s a sjinne are anangre	[]
A) WL ² /12	B)WL/8	C) WL/4	D)WL/3	
28.In portion BC, the free	moment diagram	is a symmetric parabo	la with maximum ordin	ate as
-	-		[]
A) WL ² /8	B)WL/8	C) WL/4	D)WL/3	
29.In a rigid jointed frame	, the rotating mem	bers meeting at the joi	nt will be []
A) Equal				
B) Proportional to the	e length of the mer	nber		
C) Proportional to the	ne stiffness			
D) Proportional to the	ne respective mome	ent of inertia		

Structural Analysis-II

				QUESTION BANK	2016
30. Displacement	factors for colu	mn if there is	say in the frame.	[]
A) -3/4(K/2	EK) B) -3	5/5(K/∑K)	C) -3/2(K/∑K)	D) -2/3(K/∑K)	
31. Storey mome	nt is]]
A) $S_r h_r/3$	B) S	/h _r	C) $3h_r/S_r$	D) None	
32. To start with,	unknown value	s of all rotatio	on contribution and dis	placement contributio	n are take
equal to				[]
A) 1	B) -1	C) Zero	D) None		
33. Due to lateral	sway causes ad	ditional mom	ents in the column, wh	ich may be called []
A)Rotation	contribution	B) Displace	ement contribution		
C) Torsiona	al Contribution	D) None			
34.Rotation at the	e fixed end			[]
A) L/2	B) L/4	C) Zero	D) none		
35. Net moment	at the support			[]
A) Zero	B) double	C) half	D) none		
36. Bending Mor	ment is	to shear fo	rce	[]
A) directly proportional		B) indirect	ly proportional		
C) equal		D) all the a	bove		
37. Stiffness of be	am if far end is h	nged		[]
A) 4EI/L	B) 3EI/L	C) 2EI/L	DEI/L		
38. Degree of freed				[]
A) Zero	B) 1	C) 2	D) 3		
	-		entire span. The joint	s of contraflexure will	ll occur o
			from the center.	[]
A) 1/√3	B) 1/3	C) 1/2√3	D) 1/4√3		
40. A beam is a str	ructural member	predominantly	subjected to	[]

A) Transverse loads B) axial forces C) twisting moment D) none of the above

Prepared by: J.K.Elumalai